Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination.
نویسندگان
چکیده
The ERCC1 protein is essential for nucleotide excision repair in mammalian cells and is also believed to be involved in mitotic recombination. ERCC1-deficient mice, with their extreme runting and polyploid hepatocyte nuclei, have a phenotype that is more reminiscent of a cell cycle arrest/premature ageing disorder than the classic DNA repair deficiency disease, xeroderma pigmentosum. To understand the role of ERCC1 and the link between ERCC1-deficiency and cell cycle arrest, we have studied primary and immortalised embryonic fibroblast cultures from ERCC1-deficient mice and a Chinese hamster ovary ERCC1 mutant cell line. Mutant cells from both species showed the expected nucleotide excision repair deficiency, but the mouse mutant was only moderately sensitive to mitomycin C, indicating that ERCC1 is not essential for the recombination-mediated repair of interstrand cross links in the mouse. Mutant cells from both species had a high mutation frequency and the level of genomic instability was elevated in ERCC1-deficient mouse cells, both in vivo and in vitro. There was no evidence for an homologous recombination deficit in ERCC1 mutant cells from either species. However, the frequency of S-phase-dependent illegitimate chromatid exchange, induced by ultra violet light, was dramatically reduced in both mutants. In rodent cells the G1 arrest induced by ultra violet light is less extensive than in human cells, with the result that replication proceeds on an incompletely repaired template. Illegitimate recombination, resulting in a high frequency of chromatid exchange, is a response adopted by rodent cells to prevent the accumulation of DNA double strand breaks adjacent to unrepaired lesion sites on replicating DNA and allow replication to proceed. Our results indicate an additional role for ERCC1 in this process and we propose the following model to explain the growth arrest and early senescence seen in ERCC1-deficient mice. In the absence of ERCC1, spontaneously occurring DNA lesions accumulate and the failure of the illegitimate recombination process leads to the accumulation of double strand breaks following replication. This triggers the p53 response and the G2 cell cycle arrest, mediated by increased expression of the cyclin-dependent kinase inhibitor p21(cip1/waf1). The increased levels of unrepaired lesions and double strand breaks lead to an increased mutation frequency and genome instability.
منابع مشابه
O-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملRole of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells.
Spontaneous recombination between direct repeats at the adenine phosphoribosyltransferase (APRT) locus in ERCC1-deficient cells generates a high frequency of rearrangements that are dependent on the process of homologous recombination, suggesting that rearrangements are formed by misprocessing of recombination intermediates. Given the specificity of the structure-specific Ercc1/Xpf endonuclease...
متن کاملRecombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1.
Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RADIO gene, we disabled the gene by targeted knockout. Partial tandem dup...
متن کاملI-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility
Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...
متن کاملExtensive chromosomal instability in Rad51d-deficient mouse cells.
Homologous recombination is a double-strand break repair pathway required for resistance to DNA damage and maintaining genomic integrity. In mitotically dividing vertebrate cells, the primary proteins involved in homologous recombination repair are RAD51 and the five RAD51 paralogs, RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3. In the absence of Rad51d, human and mouse cells fail to proliferate, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 111 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1998